A solar inverter or pv inverter efficiency is a critical component in a photovoltaic system and also is a type of electrical inverter that is made to change the direct current electricity from a photovoltaic array into alternating current for use with home appliances,off-grid electrical network and possibly a utility grid. Solar inverters have special functions adapted for use with PV arrays, including maximum power point tracking and anti-islanding protection.
Solar grid-tie inverters are designed to quickly disconnect from the grid if the utility grid goes down. This is an NEC requirement that ensures that in the event of a blackout, the grid tie inverter will shut down to prevent the energy it produces from harming any line workers who are sent to fix the power grid.
Grid-tie inverters that are available on the market today use a number of different technologies. The inverters may use the newer high-frequency transformers, conventional low-frequency transformers, or no transformer. Instead of converting direct current directly to 120 or 240 volts AC, high-frequency transformers employ a computerized multi-step process that involves converting the power to high-frequency AC and then back to DC and then to the final AC output voltage.
While there have historically concerns about having transformerless electrical systems feed into the public utility grid since the lack of galvanic isolation between the DC and AC circuits could allow the passage of dangerous DC faults to be transmitted to the AC side[10]; Since 2005, the NFPA's NEC allow transformerless inverters. The VDE 0126-1-1 and IEC 6210 also have been amended to allow and define the safety mechanisms needed for such systems. Primarily, residual or ground current detection is used to detect possible fault conditions. Also isolation tests are performed to insure DC to AC separation.
Many solar inverters are designed to be connected to a utility grid, and will not operate when they do not detect the presence of the grid. They contain special circuitry to precisely match the voltage and frequency of the grid. See the Anti-Islanding section for more details.